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Abstract

Singularity problems in an isotropic trimaterial are analyzed by the same procedure as in an anisotropic trimaterial
of Part I [Int. J. Solids Struct. 39, 943-957]. ‘Trimaterial’ denotes an infinite body composed of three dissimilar ma-
terials bonded along two parallel interfaces. Linear elastic isotropic materials under plane deformations are assumed, in
which the plane of deformation is perpendicular to the two parallel interface planes, and thus Muskhelishvili’s complex
potentials are used. The method of analytic continuation is alternatively applied across the two parallel interfaces in
order to derive the trimaterial solution in a series form from the corresponding homogeneous solution. A variety of
problems, e.g. a bimaterial (including a half-plane problem), a finite thin film on semi-infinite substrate, and a finite strip
of thin film, etc, can be analyzed as special cases of the present study. A film/substrate structure with a dislocation is
exemplified to verify the usefulness of the solutions obtained. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Advances in thin film and layered structure technology have served as a driving force for the evolution of
electronic and opto-electronic devices. To make electronic systems reliable, the analysis of defects, which
are inevitable and affect the performance of the systems, have attracted much attention of many researchers
(Freund, 2000). For example, elastic study on misfit dislocations in strained epitaxial films offers some
useful results such as a critical thickness of epitaxial films (Freund, 1993). The solution of dislocations in
thin film and layered structures are also used to simulate cracks in the structures by continuous distribu-
tions of dislocations (Suo and Hutchinson, 1989a,b; Fleck et al., 1991; Erdogan and Wu, 1993). From the
mechanical point of view, these dislocations are treated as singularities and the analysis of the elastic field
near the singularities plays an important role in understanding the behavior of the structures.
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By using Muskhelishvili’s complex potentials (Muskhelishvili, 1953) and the method of analytic con-
tinuation, Suo (1989) expressed the solution for a singularity in an isotropic bimaterial in terms of that for
the same singularity in a homogeneous isotropic medium. The elastic fields due to dislocations in an iso-
tropic strip (i.e., homogeneous material), film/substrate structure (i.e., bimaterial), or layered material (i.e.,
trimaterial), are studied by using complex potentials in conjunction with the Fourier integral transform by
many researchers (Lee and Dundurs, 1973; Suo and Hutchinson, 1989a,b; Fleck et al., 1991; Erdogan and
Wu, 1993; Zhang, 1995). But their method requires the inverse Fourier transform procedure, which is
somewhat cumbersome. It will be shown later that the above works can be dealt with as special cases of the
present study, which makes the present method versatile.

In this study, we employ the same procedure as in Part I (Choi and Earmme, in press). In other words,
the method of analytic continuation (Suo, 1989) is alternatively applied to the two parallel interfaces to
solve singularity problems in an isotropic trimaterial, in which the homogeneous solution for the same
singularities is used as a base. Chao and Kao (1997) analyzed an isotropic trimaterial under an anti-plane
concentrated force through iterations of Mobius transformation. Their method is similar to the alternating
technique and their solution coincides with the result of the present study as shown in Appendix A. In
Section 2, we briefly study the theory of isotropic elasticity, and then, Sections 3-5 are devoted to a sin-
gularity in a homogeneous medium, a bimaterial, and a trimaterial, respectively. The convergence of the
trimaterial solution, the energetic forces on a dislocation, and an example are dealt with in Section 6.
Section 7 concludes this article.

2. Isotropic elasticity

The components of the stresses and displacements for an isotropic body under plane deformation are
expressed in terms of two complex potentials @(z) and Q(z) as follows (Muskhelishvili, 1953):

0'11+622:2|:¢(Z)+m:|7 (1)
0'22+i0'12 :w+9(2)+(2—2)¢/(2), (2)
—ZiGa%(m Fiu) = k() — Q) — (2 —2)@(2), (3)

where k = 3 — 4v for plane strain and (3 — v)/(1 + v) for plane stress, v and G are Poisson’s ratio and shear
modulus, respectively. Here the overbar (_) represents the complex conjugate and the prime ( )’ the de-
rivative with respect to z = x| + ix,. Since the anti-plane problem can be separated from the in-plane
problem, the case of the anti-plane problem is dealt with in Appendix A in an analogous way to the
procedure described in this study for in-plane problem.

When an isotropic elastic bimaterial is in a state of plane deformation and loaded by prescribed surface
tractions, and there are no net forces on the internal boundaries, the stresses depend on only two non-
dimensional Dundurs parameters (Dundurs, 1969),

Ga(Kb + 1) — Gb(Ka + 1)
Ga(Kb + 1) + Gb(Ka + 1) ’

~ Ga(kp — 1) — Gy(ra — 1)
ﬁab*Ga(;cb+1)+Gb(Ka+1)’ “)

Olap =

where a and b refer to the two materials composing the bimaterial. A parallelogram enclosed by « = +1 and
o — 4 = 1 in the (o, f) plane is admissible for the physical values of o and f as shown in Fig. 1, in which
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Fig. 1. Dundurs parameters o and f for typical material combinations (Suga et al. 1988).

the values of « and f for various material combinations are also plotted (Suga et al., 1988). The two pa-
rameters stand for the mismatch of elastic constants between a and b materials. Noting that the choice of
the two parameters to be formed from the elastic constants is not unique, another pairs are defined as

Xab + ﬁab Oab — ﬁab
A =20l g T P 5
=T B =TT B ©)

which are more convenient for our purpose. The parallelogram in Fig. 1 is transformed into a region
enclosed by IT = 1/A, 1T = (A —1)/(A+3),and IT = 24+ 1)/(A + 2) in (A, IT) plane as shown in Fig. 2.
Some discussions related to A and IT will be presented in connection with the convergence of series solu-
tions in Section 6.1.

3. A singularity in a homogeneous medium

When a singularity is in an infinite homogeneous isotropic material, the solutions ®(z) and Qy(z) are
as follows (Muskhelishvili, 1953; Suo, 1989):

0 oG —s) Ok
Dy(z) = — Q(z) = —=———+ 6
O(Z) Z—S’ O(Z) (z—s)2 +Z—S, ( )
where s = x! + ixJ is the position of the singularity, and Q and & are defined as
(1) for a point force P(= P, + iP,)
P, +1P, .
= = 7
0=5 s k=x ™)

(ii) for an edge dislocation b(= b, + b))
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Fig. 2. Bimaterial constants IT and A for typical material combinations.

_ Gi(b, +1b))

0= k=L (8)

These fields will be used for the corresponding problems of the same singularity in a bimaterial and a
trimaterial in the following sections.

4. A singularity in a bimaterial and the method of analytic continuation

The solution of a singularity in a bimaterial bonded along x;-axis as shown in Fig. 3 is constructed by the
method of analytic continuation in terms of the homogeneous solution @,(z) and Q(z) (Suo, 1989). First, a

Singularity

Fig. 3. A singularity in a bimaterial.
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singularity located in lower half-space is treated, in which the elastic constants of material b are implied in
®y(z) and Qy(z). The complex potentials are assumed to be

| @o(z) + Pu(z), in S, [ Qo(2) + Qu(z), inS,,
26 = { ¢2(Z) + P(2), iE Sbs ) = { Qz(z) + Qu(2), 12 Sb, ©)

where S,, the upper half-space, and Sy, the lower half-space, are occupied by material a and b, respectively.
The continuity of tractions and displacements across the interface is used to determine @,(z), ®,(z), Q,(z),
and Q,(z) analytic in their given regions with the argument of the analytic continuation properly employed.
The procedure is identical to that of Suo (1989), details of which are suppressed here, and the results are as
follows:

(z) = { (1 + Aup)Po(2), in S, (10a)

(po(Z) =+ Hab.Qo(Z), il’l Sb,

_ (U M) 0(2), in S,,
Q(Z) B { QO(Z) + Aab¢0(2), 12 Sb, (IOb)

where A,, and II,, are as defined in Eq. (5).
As special cases of Eq. (9), a singularity in the lower half-space with free or rigid surface can be dealt
with. For the former case, A,, = II,, = —1 and therefore

D(z) = Po(z) — Q(2), Qz) = Q(z) — Po(z), in Sy, (11)
while for the latter case, A, = 1/I1,, = Ky, and therefore
¢(Z) = ¢0(Z) —+ .Q()(Z)/Kib7 Q(Z) = .Q()(Z) + Kb@()(z), iIl Sb~ (12)

For a singularity located in upper half-space, the solution is also assumed to be identical to Eq. (9). By
the similar procedures used in Eqgs. (10a) and (10b), one obtains

o) = { V) - T (132

[ Q(z) + A Do(z), in S,,
Q(Z){(lJera)Ezo(z), E S, (13b)

in which the elastic constants of material a are implied in @y(z) and Qy(z).

5. A singularity in a trimaterial and the alternating technique

To analyze a singularity in a trimaterial with two parallel interfaces as shown in Fig. 4, the alternating
technique together with the results of Sections 3 and 4 is applied. The procedure is precisely the same as that
of Part I (Choi and Earmme, in press) for the anisotropic case. Since it is difficult to find a solution
satisfying all the continuity conditions along two interfaces at the same time, the method of analytic
continuation should be applied to two interfaces alternatively. In order to use the method of analytic
continuation for the upper interface lying off x;-axis, we consider a coordinate translation described as
below.
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Fig. 4. A singularity in a trimaterial.

5.1. A coordinate translation

Suppose that regions S, : x, = & and Sy, : x, < & occupied by material a and b, respectively, are perfectly
bonded along the interface x, = A. With a coordinate translation z* =z — ik (see Fig. 4 with material
¢ = material b), let us reformulate the bimaterial solution obtained in the previous section. The potentials
@(z) and Q(z) in the x;x, coordinate system are related to the potentials @*(z*) and Q*(z*) in the xjx}
coordinate system by

&(z) = ("), Q(z) = Q' (2") + 2ih®"™ (z"). (14)

Thus if Egs. (10a) and (10b) are reinterpreted as the bimaterial solution in the xjx; coordinate system, Eq.
(14) leads to

e [ AYBE),  inS,

‘p(z)¢(Z)—{¢g(z)+nabgg(z*), in S, (15a)
e [ (1 ) @) + 2A(1 4 A B (), in S.,

82 = (@) + 2ihe"() = { 0)(=) + AwBy(2") + 20[0) () + @ (=7)], i S, (156)

Substituting the homogeneous solution, @j(z*) = @(z) and Q(z*) = Q(z) — 2ihd;(z) together with
®;(z") = ®y(z — 2ih) and Q}(z*) = Qy(z — 2ih) + 2ihd)(z — 2ih) into Egs. (15a) and (15b), one can find the
bimaterial solution in x;x, coordinate system as follows:

o) - { (1+ 4)20(2), in s, (162

®o(z) + My Qo(z — 2ih) + 2ihIT B (z — 2ih), in Sp,

a(z) = | (14 M) @0(e) + 2ih( Ay — ) 4(2) ) in S,, (16b)
- Q()(Z) + Aabéo(z — 21]’1) + ZihHang(z — 21]’1) — 4h2Hab¢g(Z — 21h), in Sb-

5.2. Case I: A singularity embedded in S.

With the aid of the result of the coordinate translation described in Section 5.1, now the problem in Fig. 4
is considered, in which material a, b and ¢ occupying regions S, : x, = h, S, : h = x, =0, and S, : x, <0,
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respectively, are perfectly bonded along two parallel interfaces I' : x, = 0 and I, : x, = h. Let the potentials
for the three regions be

S Pan(2), in S,,

D(z) = 2,0 Pulz) + 220, Pou(2), in Sp, (17a)
D(z) + Peo(z) + Esil &, (z), in S,
> Qun(2), in S,

Q(z) =19 >0, 2,2) + D07 Quulz), in Sy, (17b)

Q(2) + Qu(z) + 3.7 Qui(z), in Se.

By applying the method of analytic continuation to two interfaces alternatively, the unknown potentials
Doy (2), Du(2), Pan(2), Pou(2), Pen(z), Re0(2), 24(2), Lun(2), Qui(z), and Q.,(z) (n = 1,2,3,...) analytic in their
given regions are expressed in terms of ®y(z) and Qy(z), in which the elastic constants of material ¢ are
implied. The procedure is similar to the four steps described in Appendix A of Part I (Choi and Earmme, in
press), therefore the details are suppressed here. The results are as follows:

(1+ Au) 3502, ,(2), in S.,
B(2) = S [22) + 4520 ()], in Sb, (18a)
@y (2) + Mpe0(2) + (1 + Agy) Yo7, Qi (2), i S,

(1+Iy) Z:C:I Q,(2) + 2ih(Awy — ) Z;il D, (z), inS,
0() = § X% |20 + 1380 ()], in S, (18b)
QO(Z) + Abcéo(z) + (1 + Hgbl) ZZC:I @,1+1(Z), in SC)

where the recurrence formulae for @,(z) and Q,(z) respectively are
(1 + Ape) Po(2), for n =0,
P12 =9 11, [Aab<1>n (z + 2ih) — 2ihMT 2, (z + 2ih) — 42 [ @' (z + 2ih)} , forn=1,2,3,...,
(19a)

(1 + o) Q(2), for n =0,
Quii(2) = (19b)

Mo Ao [Q,,(z + 2ih) — 2ihd,(z + 2ih)|, forn=1,2,3,....

Eqgs. (18a) and (18b) with Egs. (19a) and (19b) are the complete solution for the singularity in region S
of the trimaterial.

5.3. Case II: A singularity embedded in Sy

By the same arguments as case I, the other case in which the singularity is located in region Sy, has the
following solution:

(1 + Aab) ZZC:I ¢n(z)7 in Sa7
D) = § T [4(0) + 4420 ()], in 5, (20a)
(1 + Acb)QO(z) + (1 + Ac_bl) EZC:I Qn+1(z)7 in Se
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(1+ M) 32,2 Qu(2) + 2ih(Awy — ) 32,7, P,(2),  in S,
Q@) =4 7o [Q (2) + I3 @, (z)] : in Sp, (20b)

n=1

(1+ Ha)Q(a) + (1 + 115 S0, @0 (2), in 5.,

in which the recurrence formulae for @,(z) and Q,(z) are

®(2) + HepQ(2), for n =0,
P (2) = I, [Aabqﬁ,,(z + 2ih) — 2ihI1 9, (z + 2ih) — 4 1@ (z + 2ih)|, forn=1,2,3,...
(21a)
B Qo(Z) + Acb@0(2)7 for n = 07 21b
w1(5) = IpAcy [Qn(z + 2ih) — 2ih® (z + 2ih)|, forn=1,2,3,... (21b)

Here the elastic constants in ®,(z) and Qy(z) are for material b. Egs. (20a) and (20b) with Egs. (21a) and
(21b) are the complete solution for the singularity in region S, of the trimaterial.

6. Discussion
6.1. Convergence and convergence rate of the series solutions

Since it is known that a series solution obtained via the alternating technique converges to the true
solution for isotropic elastic materials (Sokolnikoff, 1956), we now discuss the rate of convergence. It is
worth pointing out that Egs. (18a), (18b), (20a) and (20b) are expressed in terms of &,(z) and Q,(z)
(n=0,1,2,...), which may be calculated from a homogeneous solution @,(z) and y(z) by the recurrence
formulae (19a), (19b), (21a) and (21b). The rate of the convergence depends on the ratios |®,,(z)|/|®.(z)]|
and |Q,,1(2)|/|Q.(z)|, which in turn depend on the non-dimensional bimaterial constants A, Acy, Tap,
and Iy, of which typical values are illustrated in Fig. 2. The smaller the differences of elastic constants
of two adjacent materials a and b (or ¢ and b) are, the smaller the magnitudes of A,, and I, (or Ay
and 1) are, which is obvious from the definition of A,, and I1,,, Eq. (5). Consequently, the convergence
rate becomes more rapid as the differences of the elastic constants of the neighboring materials get smaller.
For most combinations of materials, A4 and IT are less than 1 and 0.5, respectively (see Fig. 2), which
guarantees rapid convergence. It is found that the sum of the first three or four terms provides a good
approximation for most combinations of materials, which is verified in an example in Section 6.3. The
thickness # of material b also affects the rate of convergence in such a way that as /4 gets larger, the series
solution is more rapidly convergent, because the ordinates of the image singularities are linearly propor-
tional to 4.

Even though materials a and/or ¢ are rigid or non-existent, the solutions still remain valid. For these
limiting cases, we replace A,p, A, [ap, and Iy, in the solution (18a)—(21b) by those indicated in Table 1 for
the four special combinations of three dissimilar materials. All the combinations illustrated in Table 1 are
meaningful for a singularity located in Sy, while only the combinations 3 and 4 have the meaning for a
singularity located in S.. For another limiting case in which two adjacent materials, say materials a and b,
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Table 1

Special combinations of three dissimilar materials forming a trimaterial
Combination type 1 2 3 4
Material a Empty Rigid Empty Rigid
Material b Elastic Elastic Elastic Elastic
Material ¢ Empty Rigid Elastic Elastic
A -1 Kp -1 Kb
Iy, -1 /K -1 1/x
Acb —1 Kp Acb Acb
e, -1 1/xy I, I,

are identical, the series solution for a trimaterial reduces to the bimaterial one. Furthermore, if material b is
non-existent or rigid, the trimaterial solutions (18a) and (18b) with solutions (19a) and (19b) reduces to the
solution (11) or solution (12), respectively.

6.2. The energetic forces exerted on a dislocation

The energetic force on a dislocation segment is given by (Peach and Koehler, 1950)
df = (o-b) x dl, (22)

for the stress field o, the Burgers vector b and the line segment dl. Note that the trimaterial solution for a
dislocation consists of a singular term and the other regular terms corresponding to the image singularities.
Using Egs. (18a), (18b), (or Egs. (20a) and (20b)), (1), (2) and (22), the image forces in x, direction per unit
length of a dislocation due to two parallel interfaces in a trimaterial are given by

f2=—Re{(bl+ibz){ncb[2ﬂo(s)+Qo(s)+(s_s)g‘z;)<s)} A ®os +f:[2<p + &,(5)

+ (s — 5P (s ] ig 2[zgn(s)+Qn(§)+(s—§)g;(s)]_chlf:qsn(s)}},

fi= —Re{ (by + ibs) {Hbc [2520(s) + Qo) + (s — m;)(s)} — ApePo(s)

NgE
bgg

+(1+ A5h [zfzn(s) +0,6) + (s — 5)9;@)} — (1 + 1)

©}] 2

for a dislocation in material b or c, respectively. It is obvious that the image force f; in the x; direction is
equal to zero. The stress field may originate not only from the image field required to satisfy the boundary
conditions, but also from external sources such as the other dislocations, residual stresses, applied forces,
etc. One may also evaluate the image forces due to the other external agencies in the same way.

Il
S}

n

||
)

n

6.3. Example: film/substrate structure with a dislocation

We revisit the film/substrate structure with an edge dislocation as shown in Fig. 5, which was previously
solved by Lee and Dundurs (1973) and Zhang (1995) by employing the Fourier transform technique. The



1208 S.T. Choi, Y.Y. Earmme | International Journal of Solids and Structures 39 (2002) 1199-1211

XZ
AY
7
film h
r,
J

X

dislocation (0,x!)

substrate

Fig. 5. A dislocation in a film on a substrate.

slip plane of an edge dislocation in the film is considered to be inclined at an angle y with respect to the
interface plane. The Burgers vector of the edge dislocation is given by b = b(cos i, siny, 0) and the tangent
line is along the x; direction. The image forces f>/ /e exerted on the dislocation with yy = 0° and 90° are
plotted for various values of Dundurs parameters in Figs. 6 and 7, respectively, in which the curves are
evaluated with terms up to n = 4 in Eq. (23), and the normalizing constant f.. is the image force on a
dislocation at a distance /4 from the free surface in half space. It is found that the contributions of terms
with n = 2, 3, and 4 to the image forces are approximately 16%, 3%, and 0.7%, respectively. It is likely that

the error of approximations with terms up to n = 4 is <1%. Present result (Figs. 6 and 7) agrees well with
that of Lee and Dundurs (1973).

41—
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Fig. 6. Normalized image forces on a dislocation with b = b, in a film/substrate structure.
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Fig. 7. Normalized image forces on a dislocation with b = b, in a film/substrate structure.

7. Conclusion

The alternating technique and the method of analytic continuation are employed to study the singu-
larities in an isotropic trimaterial. A homogeneous solution for singularities serves as a base to derive the
trimaterial solution for the same singularities in a series form. The convergence rate of the series solution
depends on the material combinations and the thickness of middle material. The smaller the mismatch of
elastic constants of adjacent materials is, the more rapid the convergence rate is. In the limiting cases, in
which one material (or even two materials) in an isotropic trimaterial is rigid or non-existent, the solution
still remains valid. Furthermore, as two adjacent materials degenerates to be a homogeneous one, the tri-
material solution reduces to the bimaterial one. Consequently, the trimaterial solution studied here can be
applied to a variety of problems, e.g. a bimaterial (including a half-plane problem), a finite thin film on
semi-infinite substrate, and a finite strip of thin film, etc. In fact, the merit of this trimaterial solution is its
wide applicability to bimaterial problems in addition to the trimaterial problem per se. Even though there
are some known solution procedures for the bimaterial problem using the Fourier transform, the present
study is much simpler and straightforward.
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Appendix A. The corresponding anti-plane problem in an isotropic trimaterial

Consider an anti-plane singularity in an isotropic trimaterial. The relations between the stresses and the
non-zero displacement u; = u3(x;,x,) are given as

6u3
ox,’
where G is the shear modulus. Substituting Eq. (A.1) into the equilibrium equation, we obtain the Laplace
equation
62u3 62u3 -
g

03, =2G oa=1,2, (A.1)

0. (A.2)

Therefore, we can take the solution of Eq. (A.2) for the imaginary part of an analytic function w(z) of a
complex variable z = x| + ix, i.e.,

1 .
s = 5 [v(z) — (2)] (A3)

Combining Egs. (A.1) and (A.3), one can write
gy + i0'3] = GW,(Z). (A4)

Then, the solution to any anti-plane deformation has been resolved to finding a proper function w(z), which
satisfies given boundary conditions.

First, the solution of a singularity, a line force or a screw dislocation, in an infinite homogeneous medium
is written as

1 P3
- B\ n(z — A.
wo(z) h@ﬁmezg, (A.5)
where b5 is the Burgers vector of a screw dislocation and p; the magnitude of a line force per unit length. By
the method of analytic continuation, the same singularity embedded in an isotropic bimaterial as shown in

Fig. 3 may be expressed as

(A + ta)wo(2), in S,
w(z) = {WO(Z) _t tasWo(z), 1n Sp, o

where t,, = (G, — Gy)/(G, + Gp). The result implies that the solution of a singularity in a bimaterial is
constructed by the proper arrangement of image singularities. In other words, in region S, the solution
consists of an image singularity at s = x + ix) (xJ < 0) with the strength multiplied by (1 + #,,), while in
region Sy, the solution is made up of the given singularity at s and an image singularity at 5 with the strength
multiplied by z,p.

By applying the alternating technique, the solution of the same singularity embedded in an isotropic
trimaterial as shown in Fig. 4 are obtained as

(14 tap) Do wal2), in S,
wz) = $ Sy [ml2) + 1l ()], in S, (A7)
wo(z) + toeWo(2) + (1 4+ tev) e o o Was1(2), in S,
for a singularity in S., where the recurrence formula of w,(z) is
W, (2) = (tanten)" (1 + toe)Wo(z + 2hni), n=0,1,2,..., (A.8)

and
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(1 + tab) Zroxi() W"(Z)7 in Sa7
w(z) = { 2o [wn (2) + 1 W (z)} : in Sp, (A.9)
(1 + ) {Wo () + D0t W (z)} , in S,

for a singularity in Sy, in which the recurrence formula of w,(z) is
W (2) = (Lanter)" [Wo(z + 2hni) + towo(z + 2hni)], n=0,1,2,.... (A.10)

Eq. (A.9) with Eq. (A.10) for a singularity in S, is identical to the result of Chao and Kao (1997) obtained
by iterations of Mobius transformation. The above results (A.7)—(A.10) show that the solution of a sin-
gularity in a trimaterial can be constructed by the proper arrangement of an infinite number of image
singularities. For example, the solution for region S, in Eq. (A.7) is made up of image singularities located
in s—2hni (n=0,1,2,...) with the strength multiplied by (1 + t.)(avter) (1 + foe) (n =0,1,2,...), re-
spectively. One may prove that the series solutions (A.7)—(A.10) are uniformly convergent because of
|tanten| < 1 for all the material combinations, except for the special case |fupte| = 1.
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