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Abstract

Singularity problems in an isotropic trimaterial are analyzed by the same procedure as in an anisotropic trimaterial

of Part I [Int. J. Solids Struct. 39, 943–957]. ‘Trimaterial’ denotes an infinite body composed of three dissimilar ma-

terials bonded along two parallel interfaces. Linear elastic isotropic materials under plane deformations are assumed, in

which the plane of deformation is perpendicular to the two parallel interface planes, and thus Muskhelishvili’s complex

potentials are used. The method of analytic continuation is alternatively applied across the two parallel interfaces in

order to derive the trimaterial solution in a series form from the corresponding homogeneous solution. A variety of

problems, e.g. a bimaterial (including a half-plane problem), a finite thin film on semi-infinite substrate, and a finite strip

of thin film, etc, can be analyzed as special cases of the present study. A film/substrate structure with a dislocation is

exemplified to verify the usefulness of the solutions obtained. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Advances in thin film and layered structure technology have served as a driving force for the evolution of
electronic and opto-electronic devices. To make electronic systems reliable, the analysis of defects, which
are inevitable and affect the performance of the systems, have attracted much attention of many researchers
(Freund, 2000). For example, elastic study on misfit dislocations in strained epitaxial films offers some
useful results such as a critical thickness of epitaxial films (Freund, 1993). The solution of dislocations in
thin film and layered structures are also used to simulate cracks in the structures by continuous distribu-
tions of dislocations (Suo and Hutchinson, 1989a,b; Fleck et al., 1991; Erdogan and Wu, 1993). From the
mechanical point of view, these dislocations are treated as singularities and the analysis of the elastic field
near the singularities plays an important role in understanding the behavior of the structures.
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By using Muskhelishvili’s complex potentials (Muskhelishvili, 1953) and the method of analytic con-
tinuation, Suo (1989) expressed the solution for a singularity in an isotropic bimaterial in terms of that for
the same singularity in a homogeneous isotropic medium. The elastic fields due to dislocations in an iso-
tropic strip (i.e., homogeneous material), film/substrate structure (i.e., bimaterial), or layered material (i.e.,
trimaterial), are studied by using complex potentials in conjunction with the Fourier integral transform by
many researchers (Lee and Dundurs, 1973; Suo and Hutchinson, 1989a,b; Fleck et al., 1991; Erdogan and
Wu, 1993; Zhang, 1995). But their method requires the inverse Fourier transform procedure, which is
somewhat cumbersome. It will be shown later that the above works can be dealt with as special cases of the
present study, which makes the present method versatile.

In this study, we employ the same procedure as in Part I (Choi and Earmme, in press). In other words,
the method of analytic continuation (Suo, 1989) is alternatively applied to the two parallel interfaces to
solve singularity problems in an isotropic trimaterial, in which the homogeneous solution for the same
singularities is used as a base. Chao and Kao (1997) analyzed an isotropic trimaterial under an anti-plane
concentrated force through iterations of M€oobius transformation. Their method is similar to the alternating
technique and their solution coincides with the result of the present study as shown in Appendix A. In
Section 2, we briefly study the theory of isotropic elasticity, and then, Sections 3–5 are devoted to a sin-
gularity in a homogeneous medium, a bimaterial, and a trimaterial, respectively. The convergence of the
trimaterial solution, the energetic forces on a dislocation, and an example are dealt with in Section 6.
Section 7 concludes this article.

2. Isotropic elasticity

The components of the stresses and displacements for an isotropic body under plane deformation are
expressed in terms of two complex potentials UðzÞ and XðzÞ as follows (Muskhelishvili, 1953):

r11 þ r22 ¼ 2 UðzÞ
h

þ UðzÞ
i
; ð1Þ

r22 þ ir12 ¼ UðzÞ þ XðzÞ þ ð�zz� zÞU0ðzÞ; ð2Þ

�2iG
o

ox1
u2ð þ iu1Þ ¼ jUðzÞ � XðzÞ � ð�zz� zÞU0ðzÞ; ð3Þ

where j ¼ 3� 4m for plane strain and ð3� mÞ=ð1þ mÞ for plane stress, m and G are Poisson’s ratio and shear
modulus, respectively. Here the overbar ð�Þ represents the complex conjugate and the prime ( )0 the de-
rivative with respect to z ¼ x1 þ ix2. Since the anti-plane problem can be separated from the in-plane
problem, the case of the anti-plane problem is dealt with in Appendix A in an analogous way to the
procedure described in this study for in-plane problem.

When an isotropic elastic bimaterial is in a state of plane deformation and loaded by prescribed surface
tractions, and there are no net forces on the internal boundaries, the stresses depend on only two non-
dimensional Dundurs parameters (Dundurs, 1969),

aab ¼
Gaðjb þ 1Þ � Gbðja þ 1Þ
Gaðjb þ 1Þ þ Gbðja þ 1Þ ; bab ¼

Gaðjb � 1Þ � Gbðja � 1Þ
Gaðjb þ 1Þ þ Gbðja þ 1Þ ; ð4Þ

where a and b refer to the two materials composing the bimaterial. A parallelogram enclosed by a ¼ �1 and
a � 4b ¼ �1 in the ða; bÞ plane is admissible for the physical values of a and b as shown in Fig. 1, in which
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the values of a and b for various material combinations are also plotted (Suga et al., 1988). The two pa-
rameters stand for the mismatch of elastic constants between a and b materials. Noting that the choice of
the two parameters to be formed from the elastic constants is not unique, another pairs are defined as

Kab ¼
aab þ bab

1� bab

; Pab ¼
aab � bab

1þ bab

; ð5Þ

which are more convenient for our purpose. The parallelogram in Fig. 1 is transformed into a region
enclosed by P ¼ 1=K, P ¼ ðK � 1Þ=ðK þ 3Þ, and P ¼ ð2K þ 1Þ=ðK þ 2Þ in ðK;PÞ plane as shown in Fig. 2.
Some discussions related to K and P will be presented in connection with the convergence of series solu-
tions in Section 6.1.

3. A singularity in a homogeneous medium

When a singularity is in an infinite homogeneous isotropic material, the solutions U0ðzÞ and X0ðzÞ are
as follows (Muskhelishvili, 1953; Suo, 1989):

U0ðzÞ ¼ � Q
z� s

; X0ðzÞ ¼ �Qð�ss� sÞ
ðz� sÞ2

þ Qĵj
z� s

; ð6Þ

where s ¼ x01 þ ix02 is the position of the singularity, and Q and ĵj are defined as

(i) for a point force P(¼ Px þ iPy)

Q ¼ Px þ iPy
2pðj þ 1Þ ; ĵj ¼ j; ð7Þ

(ii) for an edge dislocation b(¼ bx þ iby)

Fig. 1. Dundurs parameters a and b for typical material combinations (Suga et al. 1988).
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Q ¼ Giðbx þ ibyÞ
pðj þ 1Þ ; ĵj ¼ �1: ð8Þ

These fields will be used for the corresponding problems of the same singularity in a bimaterial and a
trimaterial in the following sections.

4. A singularity in a bimaterial and the method of analytic continuation

The solution of a singularity in a bimaterial bonded along x1-axis as shown in Fig. 3 is constructed by the
method of analytic continuation in terms of the homogeneous solution U0ðzÞ and X0ðzÞ (Suo, 1989). First, a

Fig. 3. A singularity in a bimaterial.

Fig. 2. Bimaterial constants P and K for typical material combinations.
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singularity located in lower half-space is treated, in which the elastic constants of material b are implied in
U0ðzÞ and X0ðzÞ. The complex potentials are assumed to be

UðzÞ ¼ U0ðzÞ þ UaðzÞ; in Sa;
U0ðzÞ þ UbðzÞ; in Sb;

�
XðzÞ ¼ X0ðzÞ þ XaðzÞ; in Sa;

X0ðzÞ þ XbðzÞ; in Sb;

�
ð9Þ

where Sa, the upper half-space, and Sb, the lower half-space, are occupied by material a and b, respectively.
The continuity of tractions and displacements across the interface is used to determine UaðzÞ, UbðzÞ, XaðzÞ,
and XbðzÞ analytic in their given regions with the argument of the analytic continuation properly employed.
The procedure is identical to that of Suo (1989), details of which are suppressed here, and the results are as
follows:

UðzÞ ¼ ð1þ KabÞU0ðzÞ; in Sa;
U0ðzÞ þ Pab

�XX0ðzÞ; in Sb;

�
ð10aÞ

XðzÞ ¼ ð1þ PabÞX0ðzÞ; in Sa;
X0ðzÞ þ Kab

�UU0ðzÞ; in Sb;

�
ð10bÞ

where Kab and Pab are as defined in Eq. (5).
As special cases of Eq. (9), a singularity in the lower half-space with free or rigid surface can be dealt

with. For the former case, Kab ¼ Pab ¼ �1 and therefore

UðzÞ ¼ U0ðzÞ � �XX0ðzÞ; XðzÞ ¼ X0ðzÞ � �UU0ðzÞ; in Sb; ð11Þ

while for the latter case, Kab ¼ 1=Pab ¼ jb and therefore

UðzÞ ¼ U0ðzÞ þ �XX0ðzÞ=jb; XðzÞ ¼ X0ðzÞ þ jb
�UU0ðzÞ; in Sb: ð12Þ

For a singularity located in upper half-space, the solution is also assumed to be identical to Eq. (9). By
the similar procedures used in Eqs. (10a) and (10b), one obtains

UðzÞ ¼ U0ðzÞ þ Pba
�XX0ðzÞ; in Sa;

ð1þ KbaÞU0ðzÞ; in Sb;

�
ð13aÞ

XðzÞ ¼ X0ðzÞ þ Kba
�UU0ðzÞ; in Sa;

ð1þ PbaÞX0ðzÞ; in Sb;

�
ð13bÞ

in which the elastic constants of material a are implied in U0ðzÞ and X0ðzÞ.

5. A singularity in a trimaterial and the alternating technique

To analyze a singularity in a trimaterial with two parallel interfaces as shown in Fig. 4, the alternating
technique together with the results of Sections 3 and 4 is applied. The procedure is precisely the same as that
of Part I (Choi and Earmme, in press) for the anisotropic case. Since it is difficult to find a solution
satisfying all the continuity conditions along two interfaces at the same time, the method of analytic
continuation should be applied to two interfaces alternatively. In order to use the method of analytic
continuation for the upper interface lying off x1-axis, we consider a coordinate translation described as
below.

S.T. Choi, Y.Y. Earmme / International Journal of Solids and Structures 39 (2002) 1199–1211 1203



5.1. A coordinate translation

Suppose that regions Sa : x2 P h and Sb : x2 6 h occupied by material a and b, respectively, are perfectly
bonded along the interface x2 ¼ h. With a coordinate translation z� ¼ z� ih (see Fig. 4 with material
c ¼ material b), let us reformulate the bimaterial solution obtained in the previous section. The potentials
UðzÞ and XðzÞ in the x1x2 coordinate system are related to the potentials U�ðz�Þ and X�ðz�Þ in the x�1x

�
2

coordinate system by

UðzÞ ¼ U�ðz�Þ; XðzÞ ¼ X�ðz�Þ þ 2ihU0�ðz�Þ: ð14Þ

Thus if Eqs. (10a) and (10b) are reinterpreted as the bimaterial solution in the x�1x
�
2 coordinate system, Eq.

(14) leads to

UðzÞ ¼ U�ðz�Þ ¼ ð1þ KabÞU�
0ðz�Þ; in Sa;

U�
0ðzÞ þ Pab

�XX�
0ðz�Þ; in Sb;

�
ð15aÞ

XðzÞ ¼ X�ðz�Þ þ 2ihU0�ðz�Þ ¼ ð1þ PabÞX�
0ðz�Þ þ 2ihð1þ KabÞU0�

0 ðz�Þ; in Sa;
X�

0ðz�Þ þ Kab
�UU�
0ðz�Þ þ 2ih½U0�

0 ðz�Þ þ Pab
�XX0�
0 ðz�Þ
; in Sb;

(
ð15bÞ

Substituting the homogeneous solution, U�
0ðz�Þ ¼ U0ðzÞ and X�

0ðz�Þ ¼ X0ðzÞ � 2ihU0
0ðzÞ together with

�UU�
0ðz�Þ ¼ �UU0ðz� 2ihÞ and �XX�

0ðz�Þ ¼ �XX0ðz� 2ihÞ þ 2ih�UU0
0ðz� 2ihÞ into Eqs. (15a) and (15b), one can find the

bimaterial solution in x1x2 coordinate system as follows:

UðzÞ ¼ ð1þ KabÞU0ðzÞ; in Sa;
U0ðzÞ þ Pab

�XX0ðz� 2ihÞ þ 2ihPab
�UU0
0ðz� 2ihÞ; in Sb;

(
ð16aÞ

XðzÞ ¼ ð1þ PabÞX0ðzÞ þ 2ihðKab � PabÞU0
0ðzÞ; in Sa;

X0ðzÞ þ Kab
�UU0ðz� 2ihÞ þ 2ihPab

�XX0
0ðz� 2ihÞ � 4h2Pab

�UU00
0ðz� 2ihÞ; in Sb:

(
ð16bÞ

5.2. Case I: A singularity embedded in Sc

With the aid of the result of the coordinate translation described in Section 5.1, now the problem in Fig. 4
is considered, in which material a, b and c occupying regions Sa : x2 P h, Sb : hP x2 P 0, and Sc : x2 6 0,

Fig. 4. A singularity in a trimaterial.
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respectively, are perfectly bonded along two parallel interfaces C : x2 ¼ 0 and C� : x2 ¼ h. Let the potentials
for the three regions be

UðzÞ ¼

P1
n¼1 UanðzÞ; in Sa;P1
n¼1 UnðzÞ þ

P1
n¼1 UbnðzÞ; in Sb;

U0ðzÞ þ Uc0ðzÞ þ
P1

n¼1 UcnðzÞ; in Sc;

8<
: ð17aÞ

XðzÞ ¼

P1
n¼1 XanðzÞ; in Sa;P1
n¼1 XnðzÞ þ

P1
n¼1 XbnðzÞ; in Sb;

X0ðzÞ þ Xc0ðzÞ þ
P1

n¼1 XcnðzÞ; in Sc:

8<
: ð17bÞ

By applying the method of analytic continuation to two interfaces alternatively, the unknown potentials
Uc0ðzÞ, UnðzÞ, UanðzÞ, UbnðzÞ, UcnðzÞ, Xc0ðzÞ, XnðzÞ, XanðzÞ, XbnðzÞ, and XcnðzÞ (n ¼ 1; 2; 3; . . .) analytic in their
given regions are expressed in terms of U0ðzÞ and X0ðzÞ, in which the elastic constants of material c are
implied. The procedure is similar to the four steps described in Appendix A of Part I (Choi and Earmme, in
press), therefore the details are suppressed here. The results are as follows:

UðzÞ ¼
ð1þ KabÞ

P1
n¼1 UnðzÞ; in Sa;P1

n¼1 UnðzÞ þ K�1
cb
�XXnþ1ðzÞ

h i
; in Sb;

U0ðzÞ þ Pbc
�XX0ðzÞ þ ð1þ K�1

cb Þ
P1

n¼1
�XXnþ1ðzÞ; in Sc;

8><
>: ð18aÞ

XðzÞ ¼
ð1þ PabÞ

P1
n¼1 XnðzÞ þ 2ihðKab � PabÞ

P1
n¼1 U0

nðzÞ; in Sa;P1
n¼1 XnðzÞ þ P�1

cb
�UUnþ1ðzÞ

h i
; in Sb;

X0ðzÞ þ Kbc
�UU0ðzÞ þ ð1þ P�1

cb Þ
P1

n¼1
�UUnþ1ðzÞ; in Sc;

8><
>: ð18bÞ

where the recurrence formulae for UnðzÞ and XnðzÞ respectively are

Unþ1ðzÞ ¼
ð1þ KbcÞU0ðzÞ; for n ¼ 0;

Pcb KabUnðzþ 2ihÞ � 2ihPabX
0
nðzþ 2ihÞ � 4h2PabU

00
nðzþ 2ihÞ

h i
; for n ¼ 1; 2; 3; . . . ;

(

ð19aÞ

Xnþ1ðzÞ ¼
ð1þ PbcÞX0ðzÞ; for n ¼ 0;

PabKcb Xnðzþ 2ihÞ � 2ihU0
nðzþ 2ihÞ

h i
; for n ¼ 1; 2; 3; . . . :

(
ð19bÞ

Eqs. (18a) and (18b) with Eqs. (19a) and (19b) are the complete solution for the singularity in region Sc
of the trimaterial.

5.3. Case II: A singularity embedded in Sb

By the same arguments as case I, the other case in which the singularity is located in region Sb has the
following solution:

UðzÞ ¼
ð1þ KabÞ

P1
n¼1 UnðzÞ; in Sa;P1

n¼1 UnðzÞ þ K�1
cb
�XXnþ1ðzÞ

h i
; in Sb;

ð1þ KcbÞU0ðzÞ þ ð1þ K�1
cb Þ

P1
n¼1

�XXnþ1ðzÞ; in Sc;

8><
>: ð20aÞ
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XðzÞ ¼
ð1þ PabÞ

P1
n¼1 XnðzÞ þ 2ihðKab � PabÞ

P1
n¼1 U0

nðzÞ; in Sa;P1
n¼1 XnðzÞ þ P�1

cb
�UUnþ1ðzÞ

h i
; in Sb;

ð1þ PcbÞX0ðzÞ þ ð1þ P�1
cb Þ

P1
n¼1

�UUnþ1ðzÞ; in Sc;

8><
>: ð20bÞ

in which the recurrence formulae for UnðzÞ and XnðzÞ are

Unþ1ðzÞ ¼
U0ðzÞ þ Pcb

�XX0ðzÞ; for n ¼ 0;

Pcb KabUnðzþ 2ihÞ � 2ihPabX
0
nðzþ 2ihÞ � 4h2PabU

00
nðzþ 2ihÞ

h i
; for n ¼ 1; 2; 3; . . .

(

ð21aÞ

Xnþ1ðzÞ ¼
X0ðzÞ þ Kcb

�UU0ðzÞ; for n ¼ 0;

PabKcb Xnðzþ 2ihÞ � 2ihU0
nðzþ 2ihÞ

h i
; for n ¼ 1; 2; 3; . . .

(
ð21bÞ

Here the elastic constants in U0ðzÞ and X0ðzÞ are for material b. Eqs. (20a) and (20b) with Eqs. (21a) and
(21b) are the complete solution for the singularity in region Sc of the trimaterial.

6. Discussion

6.1. Convergence and convergence rate of the series solutions

Since it is known that a series solution obtained via the alternating technique converges to the true
solution for isotropic elastic materials (Sokolnikoff, 1956), we now discuss the rate of convergence. It is
worth pointing out that Eqs. (18a), (18b), (20a) and (20b) are expressed in terms of UnðzÞ and XnðzÞ
(n ¼ 0; 1; 2; . . .), which may be calculated from a homogeneous solution U0ðzÞ and X0ðzÞ by the recurrence
formulae (19a), (19b), (21a) and (21b). The rate of the convergence depends on the ratios jUnþ1ðzÞj=jUnðzÞj
and jXnþ1ðzÞj=jXnðzÞj, which in turn depend on the non-dimensional bimaterial constants Kab, Kcb, Pab,
and Pcb, of which typical values are illustrated in Fig. 2. The smaller the differences of elastic constants
of two adjacent materials a and b (or c and b) are, the smaller the magnitudes of Kab and Pab (or Kcb

and Pcb) are, which is obvious from the definition of Kab and Pab, Eq. (5). Consequently, the convergence
rate becomes more rapid as the differences of the elastic constants of the neighboring materials get smaller.
For most combinations of materials, K and P are less than 1 and 0.5, respectively (see Fig. 2), which
guarantees rapid convergence. It is found that the sum of the first three or four terms provides a good
approximation for most combinations of materials, which is verified in an example in Section 6.3. The
thickness h of material b also affects the rate of convergence in such a way that as h gets larger, the series
solution is more rapidly convergent, because the ordinates of the image singularities are linearly propor-
tional to h.

Even though materials a and/or c are rigid or non-existent, the solutions still remain valid. For these
limiting cases, we replace Kab, Kcb, Pab, and Pcb in the solution (18a)–(21b) by those indicated in Table 1 for
the four special combinations of three dissimilar materials. All the combinations illustrated in Table 1 are
meaningful for a singularity located in Sb, while only the combinations 3 and 4 have the meaning for a
singularity located in Sc. For another limiting case in which two adjacent materials, say materials a and b,
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are identical, the series solution for a trimaterial reduces to the bimaterial one. Furthermore, if material b is
non-existent or rigid, the trimaterial solutions (18a) and (18b) with solutions (19a) and (19b) reduces to the
solution (11) or solution (12), respectively.

6.2. The energetic forces exerted on a dislocation

The energetic force on a dislocation segment is given by (Peach and Koehler, 1950)

df ¼ ðr 
 bÞ � dl; ð22Þ

for the stress field r, the Burgers vector b and the line segment dl. Note that the trimaterial solution for a
dislocation consists of a singular term and the other regular terms corresponding to the image singularities.
Using Eqs. (18a), (18b), (or Eqs. (20a) and (20b)), (1), (2) and (22), the image forces in x2 direction per unit
length of a dislocation due to two parallel interfaces in a trimaterial are given by

f2 ¼ �Re ðb1

(
þ ib2Þ Pcb 2�XX0ðsÞ

h(
þ X0ð�ssÞ þ ðs� �ssÞ�XX0

0ðsÞ
i
� Kcb

�UU0ðsÞ þ
X1
n¼2

2UnðsÞ
h

þ �UUnð�ssÞ

þ ðs� �ssÞU0
nðsÞ

i
�
X1
n¼2

XnðsÞ þ K�1
cb

X1
n¼2

2�XXnðsÞ
h

þ Xnð�ssÞ þ ðs� �ssÞ�XX0
nðsÞ

i
� P�1

cb

X1
n¼2

�UUnðsÞ
))

;

ð23Þ

f2 ¼ �Re ðb1

(
þ ib2Þ Pbc 2�XX0ðsÞ

h(
þ X0ð�ssÞ þ ðs� �ssÞ�XX0

0ðsÞ
i
� Kbc

�UU0ðsÞ

þ ð1þ K�1
cb Þ

X1
n¼2

2�XXnðsÞ
h

þ Xnð�ssÞ þ ðs� �ssÞ�XX0
nðsÞ

i
� ð1þ P�1

cb Þ
X1
n¼2

�UUnðsÞ
))

ð24Þ

for a dislocation in material b or c, respectively. It is obvious that the image force f1 in the x1 direction is
equal to zero. The stress field may originate not only from the image field required to satisfy the boundary
conditions, but also from external sources such as the other dislocations, residual stresses, applied forces,
etc. One may also evaluate the image forces due to the other external agencies in the same way.

6.3. Example: film/substrate structure with a dislocation

We revisit the film/substrate structure with an edge dislocation as shown in Fig. 5, which was previously
solved by Lee and Dundurs (1973) and Zhang (1995) by employing the Fourier transform technique. The

Table 1

Special combinations of three dissimilar materials forming a trimaterial

Combination type 1 2 3 4

Material a Empty Rigid Empty Rigid

Material b Elastic Elastic Elastic Elastic

Material c Empty Rigid Elastic Elastic

Kab �1 jb �1 jb

Pab �1 1=jb �1 1=jb

Kcb �1 jb Kcb Kcb

Pcb �1 1=jb Pcb Pcb
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slip plane of an edge dislocation in the film is considered to be inclined at an angle w with respect to the
interface plane. The Burgers vector of the edge dislocation is given by b ¼ bðcosw; sinw; 0Þ and the tangent
line is along the x3 direction. The image forces f2=ffree exerted on the dislocation with w ¼ 0� and 90� are
plotted for various values of Dundurs parameters in Figs. 6 and 7, respectively, in which the curves are
evaluated with terms up to n ¼ 4 in Eq. (23), and the normalizing constant ffree is the image force on a
dislocation at a distance h from the free surface in half space. It is found that the contributions of terms
with n ¼ 2, 3, and 4 to the image forces are approximately 16%, 3%, and 0.7%, respectively. It is likely that
the error of approximations with terms up to n ¼ 4 is <1%. Present result (Figs. 6 and 7) agrees well with
that of Lee and Dundurs (1973).

Fig. 6. Normalized image forces on a dislocation with b ¼ b1 in a film/substrate structure.

Fig. 5. A dislocation in a film on a substrate.
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7. Conclusion

The alternating technique and the method of analytic continuation are employed to study the singu-
larities in an isotropic trimaterial. A homogeneous solution for singularities serves as a base to derive the
trimaterial solution for the same singularities in a series form. The convergence rate of the series solution
depends on the material combinations and the thickness of middle material. The smaller the mismatch of
elastic constants of adjacent materials is, the more rapid the convergence rate is. In the limiting cases, in
which one material (or even two materials) in an isotropic trimaterial is rigid or non-existent, the solution
still remains valid. Furthermore, as two adjacent materials degenerates to be a homogeneous one, the tri-
material solution reduces to the bimaterial one. Consequently, the trimaterial solution studied here can be
applied to a variety of problems, e.g. a bimaterial (including a half-plane problem), a finite thin film on
semi-infinite substrate, and a finite strip of thin film, etc. In fact, the merit of this trimaterial solution is its
wide applicability to bimaterial problems in addition to the trimaterial problem per se. Even though there
are some known solution procedures for the bimaterial problem using the Fourier transform, the present
study is much simpler and straightforward.
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Fig. 7. Normalized image forces on a dislocation with b ¼ b2 in a film/substrate structure.
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Appendix A. The corresponding anti-plane problem in an isotropic trimaterial

Consider an anti-plane singularity in an isotropic trimaterial. The relations between the stresses and the
non-zero displacement u3 ¼ u3ðx1; x2Þ are given as

r3a ¼ 2G
ou3
oxa

; a ¼ 1; 2; ðA:1Þ

where G is the shear modulus. Substituting Eq. (A.1) into the equilibrium equation, we obtain the Laplace
equation

o2u3
ox21

þ o2u3
ox22

¼ 0: ðA:2Þ

Therefore, we can take the solution of Eq. (A.2) for the imaginary part of an analytic function wðzÞ of a
complex variable z ¼ x1 þ ix2, i.e.,

u3 ¼
1

2i
½wðzÞ � �wwð�zzÞ
: ðA:3Þ

Combining Eqs. (A.1) and (A.3), one can write

r32 þ ir31 ¼ Gw0ðzÞ: ðA:4Þ
Then, the solution to any anti-plane deformation has been resolved to finding a proper function wðzÞ, which
satisfies given boundary conditions.

First, the solution of a singularity, a line force or a screw dislocation, in an infinite homogeneous medium
is written as

w0ðzÞ ¼
1

2p
b3

�
þ p3
Gi



lnðz� sÞ; ðA:5Þ

where b3 is the Burgers vector of a screw dislocation and p3 the magnitude of a line force per unit length. By
the method of analytic continuation, the same singularity embedded in an isotropic bimaterial as shown in
Fig. 3 may be expressed as

wðzÞ ¼ ð1þ tabÞw0ðzÞ; in Sa;
w0ðzÞ þ tab�ww0ðzÞ; in Sb;

�
ðA:6Þ

where tab ¼ ðGa � GbÞ=ðGa þ GbÞ. The result implies that the solution of a singularity in a bimaterial is
constructed by the proper arrangement of image singularities. In other words, in region Sa the solution
consists of an image singularity at s ¼ x01 þ ix02 ðx02 < 0Þ with the strength multiplied by ð1þ tabÞ, while in
region Sb the solution is made up of the given singularity at s and an image singularity at �ss with the strength
multiplied by tab.

By applying the alternating technique, the solution of the same singularity embedded in an isotropic
trimaterial as shown in Fig. 4 are obtained as

wðzÞ ¼
ð1þ tabÞ

P1
n¼0 wnðzÞ; in Sa;P1

n¼0 wnðzÞ þ t�1
cb �wwnþ1ðzÞ

h i
; in Sb;

w0ðzÞ þ tbc�ww0ðzÞ þ ð1þ tcbÞ
P1

n¼0 t
�1
cb �wwnþ1ðzÞ; in Sc

8><
>: ðA:7Þ

for a singularity in Sc, where the recurrence formula of wnðzÞ is
wnðzÞ ¼ ðtabtcbÞnð1þ tbcÞw0ðzþ 2hniÞ; n ¼ 0; 1; 2; . . . ; ðA:8Þ

and
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wðzÞ ¼

ð1þ tabÞ
P1

n¼0 wnðzÞ; in Sa;P1
n¼0 wnðzÞ þ t�1

cb �wwnþ1ðzÞ
h i

; in Sb;

ð1þ tcbÞ w0ðzÞ þ
P1

n¼0 t
�1
cb �wwnþ1ðzÞ

h i
; in Sc

8>><
>>: ðA:9Þ

for a singularity in Sb, in which the recurrence formula of wnðzÞ is

wnðzÞ ¼ ðtabtcbÞn½w0ðzþ 2hniÞ þ tcb�ww0ðzþ 2hniÞ
; n ¼ 0; 1; 2; . . . : ðA:10Þ

Eq. (A.9) with Eq. (A.10) for a singularity in Sb is identical to the result of Chao and Kao (1997) obtained
by iterations of M€oobius transformation. The above results (A.7)–(A.10) show that the solution of a sin-
gularity in a trimaterial can be constructed by the proper arrangement of an infinite number of image
singularities. For example, the solution for region Sa in Eq. (A.7) is made up of image singularities located
in s� 2hni (n ¼ 0; 1; 2; . . .) with the strength multiplied by ð1þ tabÞðtabtcbÞnð1þ tbcÞ (n ¼ 0; 1; 2; . . .), re-
spectively. One may prove that the series solutions (A.7)–(A.10) are uniformly convergent because of
tabtcbj j < 1 for all the material combinations, except for the special case tabtcbj j ¼ 1.
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